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Self-Reciprocal Polynomials

A polynomial of degree n
P(x)=cox"+ax" 1+ - 4+ crix+c (¢ eC,c#0).

is called a self-reciprocal if x"P(1/x) = P(x),
i.e., cx = cp_k for every 0 < k < n.

)
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Self-Reciprocal Polynomials

@ We treat only self-reciprocal polynomials of even degree, 2g,
together with real coefficients.

If P(x) is self-reciprocal and of odd degree, then we have
P(x) = (x+1)'P(x) (r€ Zso)

for some self-reciprocal polynomial IB(X) of even degree.

@ We often denote by P,(x) a self-reciprocal polynomial of
degree 2g with real coefficients cg, c1,- - , ¢g.

@ We study conditions of (real) coefficients cp, - - - , ¢z for Pg(x)
having all its zeros on the unit circle S
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Sources of self-reciprocal polynomials

1. The zeta function of a smooth projective curve C/Fg, genus g:

Q)
2N =10 g7y

Pc(x) := Qc(x/+/q) is a self-reciprocal polynomial of degree 2g in
R[x] by the functional equation of Z¢(T).

All zeros of Pc(x) are on the unit circle by a result of A. Weil.
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Sources of self-reciprocal polynomials
Known General Results

2. The partition function of a ferromagnetic Ising model:
Let A = (a;j) be a n x n real symmetric matrix with |a; ;| <1 for
1<i<j<n. Then

n
k
Pa) =3[ > TITIaul~
k=0 1C{12,.n} i€l j&I
1=k
is a self-reciprocal polynomial.

All zeros of Pa(x) are on the unit circle by Lee-Yang circle
theorem.
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>olynomials
eciprocal polynomials

3. Discretization of integral formulas of (self-dual) L-functions:

3s(s = D i (2) o) = [ Attt

X

log T
Ervrd

= lim lim loggq Z f(qk q'kz+q 'kz)
K

T—o0 g—1t

where f(x) = 3/x 4% [x 2> nez &xp(— 7rn2x2)}, s=1-1iz
The RHS gives a family of self-reciprocal polynomials

1
Pg, Iong f(q Xg+k xg_k), g=Te.
e Other examples are Alexander polynomials of knots, Duursma

zeta polynomials of self-dual codes, etc.
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Known General Results

All zeros of a self-reciprocal polynomial P(x) € R[x] are on S*
if and only if all the zeros of P’(x) lie inside or on S.

Hence, for example, one can test whether all zeros of P(x) are on
S! by calculating the Mahler measure of P’(x).
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Known General Results

A simple condition in terms of coefficients is:

P. Lakatos, 2002

Let P(x) € C[x] be a self-reciprocal polynomial of degree n > 2.
Suppose that

n—1
ol > lek — col-
k=1

Then all zeros of P(x) are on the unit circle St.
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Known General Results

A simple condition in terms of coefficients is:

P. Lakatos, 2002

Let P(x) € C[x] be a self-reciprocal polynomial of degree n > 2.

Suppose that
n—1
ol > lek — col-
k=1

Then all zeros of P(x) are on the unit circle St.

This sufficient condition is generalized by A. Schinzel (2005),
Lakatos-L. Losonczi (2009), and D. Y. Kwon (2011).
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Known General Results

Another simple sufficient condition is:

W. Chen, 1995; K. Chinen, 2008

Suppose that P(x) € R[x] has the form

P(x) = (cox"+erx" T+ 4 ex )+ (ax  + 1T+ @),

with g > ¢c1 > -+ > ¢k >0 (n > k).
Then all zeros of P(x) are on the unit circle.

As above, known conditions in terms of coefficients are sufficient
conditions. Pattern of coefficients has the form “V" or |cp| ~ |ck/-



Linear System adapted to Pg(x)

Result | Statement of Result | :
Refinement of Theorem 1
Examples for small g

@ In this talk, we give a necessary and sufficient condition that
all zeros of P(x) are on S* and simple in terms of coefficients
Co,- - ,Cg by using the theory of canonical systems of linear
differential equations.
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Linear System adapted to Pg(x)
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@ In this talk, we give a necessary and sufficient condition that
all zeros of P(x) are on S* and simple in terms of coefficients
Co,- - ,Cg by using the theory of canonical systems of linear
differential equations.

@ However, the result itself can be stated without the language
of canonical systems.

10/38
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Linear System adapted to P,(x)

To state results, we introduce a linear system.
We define matrices Px(my) and Qi as follows:

0
1
Pl(m]_) =

= O
]

101
o110
1 0 ' 10 -1/’
0 1|0 —m 000000

o =
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Linear System adapted to Pg(x)
S |

Result |

[ 1
011
1 0 0
P2(m2):: 0 1 1 5
01 0[0 —m 0
| 0 0 1|0 0 —my |
1 0 0 1 1
0110
1 0 0 -1
@ = 01 -1 0
0 00O 0 00O
| 0 0 0O 0 00 0 |
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Linear System adapted to Pg(x)
t |

Result |

For k > 2, define square matrices Pyx(my) of size (2k + 2) by

Vi o
Pk(mk) =10 Vk_ ,
Olk —Mmy 'Olk
where
01 0 my
0/ := ;o om0l =
0 1 0 my
and ...

13/38
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Linear System adapted to Pg(x)
Statement of Result |

o

o+~ oo

V=]
0
0

if k is odd.

o =

o oo

o

= O

oo oo

=

[y

oo oo

oo oo - o

o
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Linear System adapted to Pg(x)
Result | Statement of Result |

1 0 0 0 0 0 0]
0 1 0 0 0 0 1
r R I [ R
0 0 0 1 0 0 1 0 O
| 0 0 0 0 1 1 0 0 0]
(1 0 0 0 0 0 0
0 1 0 o .- ... 0 0 -1
V= oo e e (%)x(lﬂrl),
0 0 0 1 0 0O -1 0 0
| 0 0 0 1 -1 0 0 0
if k is even.
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Lemma 1
Let kK > 1. We have

2 m k=21,
det Pk(mk) = ]
+2/ - i, if k= 2j.

In particular, the matrix Px(my) is invertible iff my # 0.

16
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Linear System adapted to Pg(x)
S t of Re |

Result |

For k > 2, we define matrices Qy of size (2k 4+ 2) x (2k + 4) by

[ W/ 0
Qk = 0 Wk_ 5
10k k+2 Ok kg2
_ L
. <k2+3> x (k+2) if k is odd,
WkJr = VkJr : K42
_ 0 | <2> x (k+2) if k is even,
- =
. <k;1> x (k+2) if kis odd,
W, =1V |.
(:) <k;2> x (k+2) if k is even.




Result |

For a self-reciprocal polynomial

Linear System adapted to Pg(x)

Statement of Result |

ment of

Examples for sr

Pg(X) = Cong -+ C]_X2g71 + .-+ ngg + .-

and arbitrary fixed g > 1,

we define the column vector v, (0) of length (4g + 2) by

o
o]

o log(q#)
c1 log(g&™1)

cg-1logq
0
—Cg-1 IOg q

—cy log(g&™1)
—co log(q#)

18 /38
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We define column vectors v, (n) of length (4g + 2 — 2n)
inductively for 1 < n < 2g by taking vg(0) as the initial vector :

19/38
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We define column vectors v, (n) of length (4g + 2 — 2n)
inductively for 1 < n < 2g by taking vg(0) as the initial vector :

vg(n—1)[1] + vg(n—1)[2g — n+ 2]
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mog—n ‘=
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Linear System adapted to Pg(x)
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Examples for small g

We define column vectors v, (n) of length (4g + 2 — 2n)
inductively for 1 < n < 2g by taking vg(0) as the initial vector :

vg(n—1)[1] + vg(n—1)[2g — n+ 2]
vg(n—1)[2g —n+3] — vg(n—1)[4g — 2n + 4]’

mog—n ‘=

vg(n) == P2g—n(m2g—n)71 Qog—n - vg(n—1),

where v[j] means j-th component of a column vector v.

® myg_p and components of vg(n) are rational functions of
coefficients (cg, -+ ,¢z) and log q for every 1 < n < 2g.

@ mpg_, is not identically zero for every 1 < n < 2g.
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Statement of Result |

Theorem 1

Let P;(x) be a self-reciprocal polynomial of degree 2g (g > 1)
with real coefficients cp, - -+, cg. Fix g > 1 arbitrary and define
numbers myg_, = Mog_p(co, - , Cg;log q) as above.

Then all zeros of Pg(x) are on the unit circle and simple
if and only if

0<myg_,<oo foreveryl<n<2g. (%)

20 /38
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Statement of Result |

Theorem 1

Let P;(x) be a self-reciprocal polynomial of degree 2g (g > 1)
with real coefficients cp, - -+, cg. Fix g > 1 arbitrary and define
numbers myg_, = Mog_p(co, - , Cg;log q) as above.

Then all zeros of Pg(x) are on the unit circle and simple
if and only if

0<myg_,<oo foreveryl<n<2g. (%)

The condition (%) is independent of the choice of ¢ > 1.
It is obvious from the following refinement of the above theorem.

20 /38
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Refinement of Theorem 1

Put m2g = m

21/38



Linear System adapted to Pg(x)

Result | Statement of Result | :
Refinement of Theorem 1
Examples for small g

Refinement of Theorem 1

———. Define R, = Ry(co, -+ ,¢s) by
Zlogq ( g)

Ro:=1

21/38
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Refinement of Theorem 1

Put myg := glolgq' Define R, = Rn(co,- -, cg) by
Ro:=1
and
Mog—1M2g—3 " M2g—2j—1 ifn=2j+1,
mogMg—2 -+ Myg_2j
R, =
M2g—2M2g—4 -+ M2g—_2j-2 ifn=2j+2,

Mog_1Mog—3 - M2g_2j1

for 1 < n < 2g, where mog_, = mag_p(co, -+, Ccg;log q).

21/38
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Refinement of Theorem 1

We have Ri(co,- -+, cg) =1 and find that Ry(cg, - - -

only on (cp, -+ ,¢g) for every 0 < n < 2g.

, Cg) depends
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Refinement of Theorem 1

We have Ri(co,---,cg) =1 and find that Ry(co, - - , ¢g) depends
only on (co, -+, ¢g) for every 0 < n < 2g. Moreover,

1

— Rp—1(co, -+ - , ¢g)Rn(co, -+, ¢ 1<Vn<2g).
e Foale )R ) )

mag—n =



Linear System adapted to Pg(x)

Result | Statement of Result | :
Refinement of Theorem 1
Examples for small g

Refinement of Theorem 1

We have Ri(co,---,cg) =1 and find that Ry(co, - - , ¢g) depends
only on (co, -+, ¢g) for every 0 < n < 2g. Moreover,

1

— Rp—1(co, -+ - , ¢g)Rn(co, -+, ¢ 1<Vn<2g).
e Foale )R ) )

mag—n =

All zeros of Pg(x) are on the unit circle and simple if and only if

0 < Rp(co, -+ ,cg) < oo foreveryl<n<2g. ()
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Examples for small g

General algebraic formula of Ry(co,- -, ¢g) is not yet obtained.
But for small g, we can calculate them by an algorithmic way:
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Examples for small g

General algebraic formula of Ry(co,- -, ¢g) is not yet obtained.
But for small g, we can calculate them by an algorithmic way:
2c0 + a1

=1, Ry(co,c1) = .
°g 2(C0 Cl) 2C0 —C

© g =2, Ry=Rp(co,c1,) (2< n<4),

R, — g+ 1 _ 8c§ — 2c12 + 4coon

2" 4 - 3_8c§+cf—4coc27
2co + 2¢1 + o

Ry= ——-—-=

B 2c0 — 2¢c1 + ¢

23 /38
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ent of Theorem 1
Examples for small g

g = 31 Rn = Rn(]-a C17C27C3) (2 S n S 6)1

6+ c 18—3c12+6c2
Ry = ) 3= T a0 A
6—c 18 +2¢cf — 6
36 + 6¢c1 — c1 + 4c13 4c22 + 18¢c3 — 14c100 + C12C2 + 3cic3
4 =

36 — 6c1 — ¢2 — 4cd — 4¢3 — 18c3 + ldcior + 2o + 3cic3”
Rs = (108 — 21c? — 12¢} 4 108¢, — 12¢3 — 1265 — 27¢2

+ 42C12C2 + 3c12c22 —54c1c3 — 6CfC3 + 30c1c263)
/(108 + 9¢? + 8¢ — 108c, + 365 — 4¢3 — 27¢3

—42¢2 0 4 23 4 Bz — dci s + 18c10063),

242 +20+c

Re = .
2—2c+2c0—c
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

An interpretation of Theorem 1

The positivity of numbers mo,_, or R, (1 < n < 2g) can be
interpreted from the viewpoint of the theory of canonical systems
of linear differential equations.
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

An interpretation of Theorem 1

The positivity of numbers mo,_, or R, (1 < n < 2g) can be
interpreted from the viewpoint of the theory of canonical systems
of linear differential equations.

In fact, the construction of my,_, is coming from the theory of
canonical systems.

Now we review the theory of canonical systems of linear differential
equations in order to explain the above things.
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Definition of Canonical Systems

Let H(a) be a 2 x 2 matrix-valued function defined almost
everywhere on an interval | = [1,ap) (1 < ap < o0).
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Result |1 Results of L. de Branges

Definition of Canonical Systems

Let H(a) be a 2 x 2 matrix-valued function defined almost
everywhere on an interval | = [1,ap) (1 < ap < o0).

A family of linear differential equations on / of the form
d [A(a,z)|  _ [0 —1 A(a, z) . Al(a,z)| |1
~da [3(37 Z)} - [1 0 ] (z) [3(372) ’aILT; B(a,z)] [0

parametrized by the complex parameter z € C is called
a (two-dimensional) canonical system
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d [A(a,z)|  _ [0 —1 A(a, z) . Al(a,z)| |1
2 [B(a, z)} =7 [1 0 ] H(a) [B(a,z) - M B(a,z)) ~ o
parametrized by the complex parameter z € C is called

a (two-dimensional) canonical system if
e H(a) ='H(a) and H(a) > 0 for almost every a € I,
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Definition of Canonical Systems

Let H(a) be a 2 x 2 matrix-valued function defined almost
everywhere on an interval | = [1,ap) (1 < ap < o0).

A family of linear differential equations on / of the form
d [A(a,z)|  _ [0 —1 A(a, z) . Al(a,z)| |1
~da [3(37 Z)} - [1 0 ] (z) [3(372) ’aILT; B(a,z)] [0

parametrized by the complex parameter z € C is called
a (two-dimensional) canonical system if

e H(a) ='H(a) and H(a) > 0 for almost every a € I,
e H(a) # 0 on any open subset J C | with |J]| > 0,
e H(a) is locally integrable on /.

For a canonical system, H(a) is called its Hamiltonian.
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Relation with Theorem 1

By using the previous mygz_, and vg(n) attached to Pg(x),
we can construct a 2 X 2 matrix-valued function Hy(a) and
a pair of functions (Aq(a, z), B4(a, z)) satisfying

a system of linear differential equations on [1, g8) such that
Hgy(a) is expected to be its Hamiltonian.
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Construction of the Hamiltonian

Define the function mg(a) on [1, q&) by

. n—1
ma(a) = mag—n if q°

[SIE]

<a<g

and define the 2 x 2 matrix-valued function Hg(a) by

i = "0 )
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Construction of the Hamiltonian

Define the function mg(a) on [1, q&) by

. n—1
ma(a) = mag—n if q°

[SIE]

<a<g

and define the 2 x 2 matrix-valued function Hg(a) by

i = "0 )

By Theorem 1, H,(a) satisfies conditions of a Hamiltonian
if and only if all zeros of Pg(x) are on the unit circle and simple.
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Canonical systems
Result 1l Statement of Result Il
Results of L. de Branges

Construction of the solution

In addition, define Aq(a, z) and Bqy(a, z) for (a,z) € [1,q8) x C by

[Aq(a,z)] 1 [1 0} x

By(a, z) 210 —i
[Cg(a, z) - Co_(2g-n)(a,2) 0 e 0 ve(n)
0 - 0 sg(a,z) -+ Sg_(og-m(a,2)] &

if g7 <a<qb (1<n<2g), where

ck(a, z) : = 2 cos(z log(g"/a)),
sk(a, z) : = 2isin(zlog(q*/a)).

29 /38



Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Construction of the boundary value

For a self-reciprocal polynomial Pg(x) and g > 1, we define

i
X

Aq(2) = q & Pg(q”) = Ck(Q(g_k)iz + q‘(g"‘)"2> + o,
0

x
Il
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Construction of the boundary value

For a self-reciprocal polynomial Pg(x) and g > 1, we define

g—1
Aq(2) == q 8% Pg(q”) = Z Ck (q(g_k)lz + q_(g_k)’z> + cg.
k=0

Clearly, all zeros of Pg(x) are on the unit circle and simple
if and only if all zeros of Ay(z) are real and simple.
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Construction of the boundary value

For a self-reciprocal polynomial Pg(x) and g > 1, we define

g—1
Aq(2) == q 8% Pg(q”) = Z Ck (q(g_k)lz + q_(g_k)’z> + cg.
k=0

Clearly, all zeros of Pg(x) are on the unit circle and simple
if and only if all zeros of Ay(z) are real and simple.

Further, we define
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Canonical systems
Statement of Result I

Result 1l Results of L. de Branges

Statement of Result Il

Ag(a, z) and Bg(a, z) are continuous functions on [1, g8) w.r.t. a,
differentiable on (g("~1)/2 ¢"/2) for 1 < Vn < 2g, and satisfy

n o BRI RO e
Al ] _A)] i (AT [

for z € C. Moreover, this is a canonical system if and only if all
zeros of Pg(x) are on the unit circle and simple.
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Result |1 Results of L. de Branges

Results of L. de Branges

de Branges, |, 1959-1962

Every canonical system has a unique solution (A(a, z), B(a, z))
such that E(a, z) := A(a, z) — iB(a, z) is entire w.r.t z, satisfies

(HB)  |F(2)| > |F¥(z)| for S(2) >0 (Fi(2) = F(2)),

has no real zeros, and E(a,0) = 1 for every (regular) a € [1, ap).
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Result 11

Results of L. de Branges

de Branges, |, 1959-1962

Every canonical system has a unique solution (A(a, z), B(a, z))
such that E(a, z) := A(a, z) — iB(a, z) is entire w.r.t z, satisfies

(HB)  |F(2)| > |F¥(z)| for S(2) >0 (Fi(2) = F(2)),

has no real zeros, and E(a,0) = 1 for every (regular) a € [1, ap).

Condition (HB) implies that all zeros of A(a,z) and B(a, z) are
real and interlace.
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Canonical systems
Statement of Result I
Results of L. de Branges

Result 11

Results of L. de Branges

de Branges, I, 1959-1962

Let E(z) be an entire function satisfying (HB), having no real
zeros, and E(0) = 1. Then there exists a canonical system and its
solution (A(a, z), B(a, z)) satisfying

N

2] L(E(2) + E4(2)
L(E(2) - E4(2)

That is, canonical systems coincide with entire functions satisfying
(HB) and having no real zeros.
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Result 11

Eq(z) = Aq(z) — iA,(2) satisfies (HB) and has no real zeros
if and only if all zeros of Ay(z) are real and simple.
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Result 11

St
Results of L. de Branges

Eq(z) = Aq(z) — iA,(2) satisfies (HB) and has no real zeros
if and only if all zeros of Ay(z) are real and simple.

Therefore, if all zeros of Pg(x) are on S! and simple, then there
exists a canonical system s.t. its solution (A(a, z), B(a, z)) satisfies

s = [5:5)

Theorem 2 assert that this canonical system and the solution are
constructed concretely by using numbers moz_, and vectors v, (n).
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Complement |1
Complements

Chebyshev transform and Algebraic formula

There exists real numbers Ay, ---, Ag such that
g—1
Pg(x) = Z k(X% 7K 4 xK) 4 ¢ x8
k=0
g
= cox8 H(x +x7t—2)).
j=1

(Pg(x) — o ng:l(y — 2);) is called the Chebyshev transform.)
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Complement |1

Complements

eg=1, Ry, 1) = T
e g =2, Ry=Rn(co,c1,0) (2<n<4),

(I=X)+(1=X)

Ro = (1+ A1)+ (1+A)

Ry — (1-M)+(1-X)
(A1 — A2)?

Re (1= A1)(1— )

(T+X)(1+ X))
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Complement |1

Complements

e g =3, Ry = Rn(co,c1,0,c3) (2<n<6),

R, — (1=A)+(1—2)+(1—N3)
2T M)+ T+ X)) F (T As)
NS R{CES RISY
(A1 = A2)? + (A1 — A3)? + (A2 — A3)?’
R e
NN PN (PRI (PRI CYEPY
Rs — Zl§i<j§3( )‘2)( )‘12)0‘1 —Aj )
H1§i<j§3()‘ )‘1)2 7
(A=A = A2)(1 — Ag)
T M)A+ M)A F A
As mentioned before, general (algebraic) formula of Ry(cg, -+, ¢g)

or Ry(A1,--+, Ag) had not yet been obtained.
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Complement Il

Complements

We can deal with the case that all zeros of P,(x) are on the unit
circle but Pg(x) may have multiple zeros, if we define mpz_, by

taking the column vector v4(0) = <:g’“’> of length (4g +2) as
g?w
the initial vector, where

t -1 - -
ag. = (0q® cag® v . 1¢Y ¢ g1 - cog E¥)

for w > 0. In this way, we obtain a family of systems parametrized
by w > 0 which corresponds to the family of functions

%(Aq(z +iw) + Aglz = iw)) (@ >0)

as well as Aq4(z).
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