Zeros of self-reciprocal polynomials and canonical systems of differential equations

Masatoshi SUZUKI

Department of Mathematics, Tokyo Institute of Technology
2012 Conference on L-functions
Shineville Resort Jeju, South Korea
August 24, 2012

Self-Reciprocal Polynomials

A polynomial of degree n

$$
P(x)=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n} \quad\left(c_{i} \in \mathbb{C}, c_{0} \neq 0\right) .
$$

is called a self-reciprocal if $x^{n} P(1 / x)=P(x)$,
i.e., $c_{k}=c_{n-k}$ for every $0 \leq k \leq n$.

Self-Reciprocal Polynomials

- We treat only self-reciprocal polynomials of even degree, $2 g$, together with real coefficients.

If $P(x)$ is self-reciprocal and of odd degree, then we have

$$
P(x)=(x+1)^{r} \tilde{P}(x) \quad\left(r \in \mathbb{Z}_{>0}\right)
$$

for some self-reciprocal polynomial $\tilde{P}(x)$ of even degree.

- We often denote by $P_{g}(x)$ a self-reciprocal polynomial of degree $2 g$ with real coefficients c_{0}, c_{1},
- We study conditions of (real) coefficients c_{0}, \cdots, c_{g} for $P_{g}(x)$ having all its zeros on the unit circle S^{1}.

Self-Reciprocal Polynomials

- We treat only self-reciprocal polynomials of even degree, $2 g$, together with real coefficients.

If $P(x)$ is self-reciprocal and of odd degree, then we have

$$
P(x)=(x+1)^{r} \tilde{P}(x) \quad\left(r \in \mathbb{Z}_{>0}\right)
$$

for some self-reciprocal polynomial $\tilde{P}(x)$ of even degree.

- We often denote by $P_{g}(x)$ a self-reciprocal polynomial of degree $2 g$ with real coefficients c_{0}, c_{1},
- We study conditions of (real) coefficients c_{0}, \cdots, C_{g} for $P_{g}(x)$ having all its zeros on the unit circle S^{1}

Self-Reciprocal Polynomials

- We treat only self-reciprocal polynomials of even degree, $2 g$, together with real coefficients.

If $P(x)$ is self-reciprocal and of odd degree, then we have

$$
P(x)=(x+1)^{r} \tilde{P}(x) \quad\left(r \in \mathbb{Z}_{>0}\right)
$$

for some self-reciprocal polynomial $\tilde{P}(x)$ of even degree.

- We often denote by $P_{g}(x)$ a self-reciprocal polynomial of degree $2 g$ with real coefficients $c_{0}, c_{1}, \cdots, c_{g}$.

- We study conditions of (real) coefficients c_{0}, \cdots, c_{g} for $P_{g}(x)$ having all its zeros on the unit circle S^{1}.

Self-Reciprocal Polynomials

- We treat only self-reciprocal polynomials of even degree, $2 g$, together with real coefficients.

If $P(x)$ is self-reciprocal and of odd degree, then we have

$$
P(x)=(x+1)^{r} \tilde{P}(x) \quad\left(r \in \mathbb{Z}_{>0}\right)
$$

for some self-reciprocal polynomial $\tilde{P}(x)$ of even degree.

- We often denote by $P_{g}(x)$ a self-reciprocal polynomial of degree $2 g$ with real coefficients $c_{0}, c_{1}, \cdots, c_{g}$.
- We study conditions of (real) coefficients c_{0}, \cdots, c_{g} for $P_{g}(x)$ having all its zeros on the unit circle S^{1}.

Sources of self-reciprocal polynomials

1. The zeta function of a smooth projective curve C / \mathbb{F}_{q}, genus g :

$$
Z_{C}(T)=\frac{Q_{C}(T)}{(1-T)(1-q T)}
$$

$P_{C}(x):=Q_{C}(x / \sqrt{q})$ is a self-reciprocal polynomial of degree $2 g$ in $\mathbb{R}[x]$ by the functional equation of $Z_{C}(T)$.
All zeros of $P_{C}(x)$ are on the unit circle by a result of A. Weil.
2. The partition function of a ferromagnetic Ising model:

Let $A=\left(a_{i, j}\right)$ be a $n \times n$ real symmetric matrix with $\left|a_{i, j}\right| \leq 1$ for $1 \leq i<j \leq n$. Then

$$
P_{A}(x)=\sum_{k=0}^{n}\left[\sum_{\substack{i \subset\{1,2, \ldots, n\} \\| | \mid=k}} \prod_{i \in I} \prod_{j \notin \mid} a_{i, j}\right] x^{k}
$$

is a self-reciprocal polynomial.
All zeros of $P_{A}(x)$ are on the unit circle by Lee-Yang circle theorem.
3. Discretization of integral formulas of (self-dual) L-functions:

$$
\begin{gathered}
\frac{1}{2} s(s-1) \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\int_{1}^{\infty} f(x)\left(x^{s-\frac{1}{2}}+x^{-\left(s-\frac{1}{2}\right)}\right) \frac{d x}{x} \\
=\lim _{T \rightarrow \infty} \lim _{q \rightarrow 1^{+}} \log q \sum_{k=0}^{\left\lfloor\frac{\log T}{\log q}\right\rfloor} f\left(q^{k}\right)\left(q^{i k z}+q^{-i k z}\right)
\end{gathered}
$$

where $f(x)=\frac{1}{2} \sqrt{x} \frac{d}{d x}\left[x^{2} \frac{d}{d x} \sum_{n \in \mathbb{Z}} \exp \left(-\pi n^{2} x^{2}\right)\right], s=\frac{1}{2}-i z$.
The RHS gives a family of self-reciprocal polynomials

$$
P_{g, T}(x)=\log q \sum_{k=0}^{g} f\left(q^{k}\right)\left(x^{g+k}+x^{g-k}\right), \quad q=T^{\frac{1}{g}}
$$

- Other examples are Alexander polynomials of knots, Duursma zeta polynomials of self-dual codes, etc.

Known General Results

A. Cohn, 1922

All zeros of a self-reciprocal polynomial $P(x) \in \mathbb{R}[x]$ are on S^{1} if and only if all the zeros of $P^{\prime}(x)$ lie inside or on S^{1}.

Hence, for example, one can test whether all zeros of $P(x)$ are on S^{1} by calculating the Mahler measure of $P^{\prime}(x)$.

Known General Results

A simple condition in terms of coefficients is:
P. Lakatos, 2002

Let $P(x) \in \mathbb{C}[x]$ be a self-reciprocal polynomial of degree $n \geq 2$.
Suppose that

$$
\left|c_{0}\right| \geq \sum_{k=1}^{n-1}\left|c_{k}-c_{0}\right|
$$

Then all zeros of $P(x)$ are on the unit circle S^{1}.
This sufficient condition is generalized by A. Schinzel (2005), Lakatos-L. Losonczi (2009), and D. Y. Kwon (2011)

Known General Results

A simple condition in terms of coefficients is:
P. Lakatos, 2002

Let $P(x) \in \mathbb{C}[x]$ be a self-reciprocal polynomial of degree $n \geq 2$.
Suppose that

$$
\left|c_{0}\right| \geq \sum_{k=1}^{n-1}\left|c_{k}-c_{0}\right|
$$

Then all zeros of $P(x)$ are on the unit circle S^{1}.
This sufficient condition is generalized by A. Schinzel (2005), Lakatos-L. Losonczi (2009), and D. Y. Kwon (2011).

Known General Results

Another simple sufficient condition is:

W. Chen, 1995; K. Chinen, 2008

Suppose that $P(x) \in \mathbb{R}[x]$ has the form
$P(x)=\left(c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{k} x^{n-k}\right)+\left(c_{k} x^{k}+c_{k-1} x^{k-1}+\cdots+c_{0}\right)$,
with $c_{0}>c_{1}>\cdots>c_{k}>0(n \geq k)$.
Then all zeros of $P(x)$ are on the unit circle.
As above, known conditions in terms of coefficients are sufficient conditions. Pattern of coefficients has the form " V " or $\left|c_{0}\right| \approx\left|c_{k}\right|$

Known General Results

Another simple sufficient condition is:

W. Chen, 1995; K. Chinen, 2008

Suppose that $P(x) \in \mathbb{R}[x]$ has the form
$P(x)=\left(c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{k} x^{n-k}\right)+\left(c_{k} x^{k}+c_{k-1} x^{k-1}+\cdots+c_{0}\right)$,
with $c_{0}>c_{1}>\cdots>c_{k}>0(n \geq k)$.
Then all zeros of $P(x)$ are on the unit circle.
As above, known conditions in terms of coefficients are sufficient conditions. Pattern of coefficients has the form " V " or $\left|c_{0}\right| \approx\left|c_{k}\right|$.

Result I

- In this talk, we give a necessary and sufficient condition that all zeros of $P(x)$ are on S^{1} and simple in terms of coefficients c_{0}, \cdots, c_{g} by using the theory of canonical systems of linear differential equations.
- However, the result itself can be stated without the language
of canonical systems.

Result I

- In this talk, we give a necessary and sufficient condition that all zeros of $P(x)$ are on S^{1} and simple in terms of coefficients c_{0}, \cdots, c_{g} by using the theory of canonical systems of linear differential equations.
- However, the result itself can be stated without the language of canonical systems.

Linear System adapted to $P_{g}(x)$

To state results, we introduce a linear system.
We define matrices $P_{k}\left(m_{k}\right)$ and Q_{k} as follows:

$$
\begin{aligned}
& P_{0}\left(m_{0}\right):=P_{0}:=\left[\begin{array}{l|l}
1 & \\
\hline & 1
\end{array}\right], \quad Q_{0}:=\left[\begin{array}{ll|ll}
1 & 1 & & \\
\hline & & 1 & -1
\end{array}\right], \\
& P_{1}\left(m_{1}\right):=\left[\begin{array}{cc|cc}
1 & 0 & & \\
0 & 1 & & \\
\hline & & 1 & 0 \\
\hline 0 & 1 & 0 & -m_{1}
\end{array}\right], Q_{1}:=\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & & & \\
0 & 1 & 0 & & & \\
\hline & & & 1 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

Linear System adapted to $P_{g}(x)$ Statement of Result I Refinement of Theorem 1 Examples for small g

$$
\begin{aligned}
P_{2}\left(m_{2}\right) & :=\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & & & \\
0 & 1 & 1 & & & \\
\hline & & & 1 & 0 & 0 \\
& & & 0 & 1 & -1 \\
\hline 0 & 1 & 0 & 0 & -m_{2} & 0 \\
0 & 0 & 1 & 0 & 0 & -m_{2}
\end{array}\right], \\
Q_{2} & :=\left[\begin{array}{llll|lllll}
1 & 0 & 0 & 1 & & & \\
0 & 1 & 1 & 0 & & & & \\
\hline & & & & 1 & 0 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right] .
\end{aligned}
$$

For $k \geq 2$, define square matrices $P_{k}\left(m_{k}\right)$ of size $(2 k+2)$ by

$$
P_{k}\left(m_{k}\right):=\left[\begin{array}{cc}
V_{k}^{+} & 0 \\
0 & V_{k}^{-} \\
0 I_{k} & -m_{k} \cdot 0 I_{k}
\end{array}\right],
$$

where

$$
\mathbf{0} I_{k}:=\left[\begin{array}{c|ccc}
0 & 1 & & \\
\vdots & & \ddots & \\
0 & & & 1
\end{array}\right], \quad m_{k} \cdot \mathbf{0} I_{k}:=\left[\begin{array}{c|ccc}
0 & m_{k} & & \\
\vdots & & \ddots & \\
0 & & & m_{k}
\end{array}\right]
$$

and...

$$
\begin{aligned}
& V_{k}^{+}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & \cdots & 0 & 1 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]\left(\frac{k+3}{2}\right) \times(k+1), \\
& V_{k}^{-}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
-1 \\
\cdots & \cdots \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0
\end{array}\right]\left(\frac{k+1}{2}\right) \times(k+1),
\end{aligned}
$$

if k is odd.
if k is even.

Lemma 1

Let $k \geq 1$. We have

$$
\operatorname{det} P_{k}\left(m_{k}\right)= \begin{cases} \pm 2^{j-1} \cdot m_{2 j-1}^{j} & \text { if } k=2 j-1 \\ \pm 2^{j} \cdot m_{2 j}^{j} & \text { if } k=2 j\end{cases}
$$

In particular, the matrix $P_{k}\left(m_{k}\right)$ is invertible iff $m_{k} \neq 0$.

For $k \geq 2$, we define matrices Q_{k} of size $(2 k+2) \times(2 k+4)$ by

$$
\begin{gathered}
Q_{k}:=\left[\begin{array}{cc}
W_{k}^{+} & 0 \\
0 & W_{k}^{-} \\
\mathbf{0}_{k, k+2} & \mathbf{0}_{k, k+2}
\end{array}\right], \\
W_{k}^{+}:=\left[\begin{array} { l }
{ V _ { k } ^ { + } \begin{array} { c }
{ 1 } \\
{ 0 } \\
{ \vdots } \\
{ 0 }
\end{array}] }
\end{array} \left\{\begin{array}{ll}
\left(\frac{k+3}{2}\right) \times(k+2) & \text { if } k \text { is odd, } \\
\left(\frac{k+2}{2}\right) \times(k+2) & \text { if } k \text { is even, }
\end{array}\right.\right. \\
W_{k}^{-}:=\left[V_{k}^{-}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right.
\end{gathered} \begin{cases}\left(\frac{k+1}{2}\right) \times(k+2) & \text { if } k \text { is odd, } \\
\left(\frac{k+2}{2}\right) \times(k+2) & \text { if } k \text { is even. } .\end{cases}
$$

For a self-reciprocal polynomial
$P_{g}(x)=c_{0} x^{2 g}+c_{1} x^{2 g-1}+\cdots+c_{g} x^{g}+\cdots$
and arbitrary fixed $q>1$,
we define the column vector $v_{g}(0)$ of length $(4 g+2)$ by

$$
v_{g}(0):=\binom{\mathbf{a}_{g}}{\mathbf{b}_{g}}, \quad \mathbf{a}_{g}:=\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{g-1} \\
c_{g} \\
c_{g-1} \log \left(q^{g}\right) \\
c_{1} \log \left(q^{g-1}\right) \\
\vdots \\
c_{1} \\
c_{0}
\end{array}\right), \quad \mathbf{b}_{g}:=\left(\begin{array}{c}
c_{g-1} \log q \\
0 \\
-c_{g-1} \log q \\
\vdots \\
-c_{1} \log \left(q^{g-1}\right) \\
-c_{0} \log \left(q^{g}\right)
\end{array}\right) .
$$

We define column vectors $v_{g}(n)$ of length ($4 g+2-2 n$) inductively for $1 \leq n \leq 2 g$ by taking $v_{g}(0)$ as the initial vector :

$$
m_{2 g-n}:=\frac{v_{g}(n-1)[1]+v_{g}(n-1)[2 g-n+2]}{v_{g}(n-1)[2 g-n+3]-v_{g}(n-1)[4 g-2 n+4]},
$$

$$
v_{g}(n):=P_{2 g-n}\left(m_{2 g-n}\right)^{-1} \cdot Q_{2 g-n} \cdot v_{g}(n-1),
$$

where $v[j]$ means j-th component of a column vector v.

- $m_{2 g-n}$ and components of $v_{g}(n)$ are rational functions of coefficients $\left(c_{0}, \cdots, c_{g}\right)$ and $\log q$ for every $1 \leq n \leq 2 g$.
- $m_{2 g-n}$ is not identically zero for every $1 \leq n \leq 2 g$.

We define column vectors $v_{g}(n)$ of length $(4 g+2-2 n)$ inductively for $1 \leq n \leq 2 g$ by taking $v_{g}(0)$ as the initial vector :

$$
m_{2 g-n}:=\frac{v_{g}(n-1)[1]+v_{g}(n-1)[2 g-n+2]}{v_{g}(n-1)[2 g-n+3]-v_{g}(n-1)[4 g-2 n+4]},
$$

where $v[j]$ means j-th component of a column vector v.

- $m_{2 g-n}$ and components of $v_{g}(n)$ are rational functions of coefficients $\left(c_{0}, \cdots, c_{g}\right)$ and $\log q$ for every $1 \leq n \leq 2 g$. - $m_{2 g-n}$ is not identically zero for every $1 \leq n \leq 2 g$.

We define column vectors $v_{g}(n)$ of length $(4 g+2-2 n)$ inductively for $1 \leq n \leq 2 g$ by taking $v_{g}(0)$ as the initial vector :

$$
\begin{gathered}
m_{2 g-n}:=\frac{v_{g}(n-1)[1]+v_{g}(n-1)[2 g-n+2]}{v_{g}(n-1)[2 g-n+3]-v_{g}(n-1)[4 g-2 n+4]}, \\
v_{g}(n):=P_{2 g-n}\left(m_{2 g-n}\right)^{-1} \cdot Q_{2 g-n} \cdot v_{g}(n-1),
\end{gathered}
$$

where $v[j]$ means j-th component of a column vector v.

- $m_{2 g-n}$ and components of $v_{g}(n)$ are rational functions of coefficients $\left(c_{0}, \cdots, c_{g}\right)$ and $\log q$ for every $1 \leq n \leq 2 g$.

We define column vectors $v_{g}(n)$ of length $(4 g+2-2 n)$ inductively for $1 \leq n \leq 2 g$ by taking $v_{g}(0)$ as the initial vector :

$$
\begin{gathered}
m_{2 g-n}:=\frac{v_{g}(n-1)[1]+v_{g}(n-1)[2 g-n+2]}{v_{g}(n-1)[2 g-n+3]-v_{g}(n-1)[4 g-2 n+4]}, \\
v_{g}(n):=P_{2 g-n}\left(m_{2 g-n}\right)^{-1} \cdot Q_{2 g-n} \cdot v_{g}(n-1),
\end{gathered}
$$

where $v[j]$ means j-th component of a column vector v.

- $m_{2 g-n}$ and components of $v_{g}(n)$ are rational functions of coefficients $\left(c_{0}, \cdots, c_{g}\right)$ and $\log q$ for every $1 \leq n \leq 2 g$.

We define column vectors $v_{g}(n)$ of length $(4 g+2-2 n)$ inductively for $1 \leq n \leq 2 g$ by taking $v_{g}(0)$ as the initial vector :

$$
\begin{gathered}
m_{2 g-n}:=\frac{v_{g}(n-1)[1]+v_{g}(n-1)[2 g-n+2]}{v_{g}(n-1)[2 g-n+3]-v_{g}(n-1)[4 g-2 n+4]}, \\
v_{g}(n):=P_{2 g-n}\left(m_{2 g-n}\right)^{-1} \cdot Q_{2 g-n} \cdot v_{g}(n-1),
\end{gathered}
$$

where $v[j]$ means j-th component of a column vector v.

- $m_{2 g-n}$ and components of $v_{g}(n)$ are rational functions of coefficients (c_{0}, \cdots, c_{g}) and $\log q$ for every $1 \leq n \leq 2 g$.
- $m_{2 g-n}$ is not identically zero for every $1 \leq n \leq 2 g$.

Statement of Result I

Theorem 1

Let $P_{g}(x)$ be a self-reciprocal polynomial of degree $2 g(g \geq 1)$ with real coefficients c_{0}, \cdots, c_{g}. Fix $q>1$ arbitrary and define numbers $m_{2 g-n}=m_{2 g-n}\left(c_{0}, \cdots, c_{g} ; \log q\right)$ as above.
Then all zeros of $P_{g}(x)$ are on the unit circle and simple if and only if

$$
\begin{equation*}
0<m_{2 g-n}<\infty \quad \text { for every } 1 \leq n \leq 2 g \tag{*}
\end{equation*}
$$

The condition $(*)$ is independent of the choice of $q>1$.
It is obvious from the following refinement of the above theorem.

Statement of Result I

Theorem 1

Let $P_{g}(x)$ be a self-reciprocal polynomial of degree $2 g(g \geq 1)$ with real coefficients c_{0}, \cdots, c_{g}. Fix $q>1$ arbitrary and define numbers $m_{2 g-n}=m_{2 g-n}\left(c_{0}, \cdots, c_{g} ; \log q\right)$ as above.
Then all zeros of $P_{g}(x)$ are on the unit circle and simple if and only if

$$
\begin{equation*}
0<m_{2 g-n}<\infty \quad \text { for every } 1 \leq n \leq 2 g \tag{*}
\end{equation*}
$$

The condition $(*)$ is independent of the choice of $q>1$. It is obvious from the following refinement of the above theorem.

Refinement of Theorem 1

$$
\text { Put } m_{2 g}:=\frac{1}{g \log q} \text {. Define } R_{n}=R_{n}\left(c_{0}, \cdots, c_{g}\right) \text { by }
$$

$$
R_{0}:=1
$$

and

for $1 \leq n \leq 2 g$, where $m_{2 g-n}=m_{2 g-n}\left(c_{0}, \cdots, c_{g} ; \log q\right)$.

Refinement of Theorem 1

$$
\text { Put } m_{2 g}:=\frac{1}{g \log q} \text {. Define } R_{n}=R_{n}\left(c_{0}, \cdots, c_{g}\right) \text { by }
$$

$$
R_{0}:=1
$$

for $1 \leq n \leq 2 g$, where $m_{2 g-n}=m_{2 g-n}\left(c_{0}, \cdots, c_{g} ; \log q\right)$.

Refinement of Theorem 1

Put $m_{2 g}:=\frac{1}{g \log q}$. Define $R_{n}=R_{n}\left(c_{0}, \cdots, c_{g}\right)$ by

$$
R_{0}:=1
$$

and

$$
R_{n}:=\left\{\begin{array}{cl}
\frac{m_{2 g-1} m_{2 g-3} \cdots m_{2 g-2 j-1}}{m_{2 g} m_{2 g-2} \cdots m_{2 g-2 j}} & \text { if } n=2 j+1, \\
\frac{m_{2 g-2} m_{2 g-4} \cdots m_{2 g-2 j-2}}{m_{2 g-1} m_{2 g-3} \cdots m_{2 g-2 j-1}} & \text { if } n=2 j+2,
\end{array}\right.
$$

for $1 \leq n \leq 2 g$, where $m_{2 g-n}=m_{2 g-n}\left(c_{0}, \cdots, c_{g} ; \log q\right)$.

Refinement of Theorem 1

We have $R_{1}\left(c_{0}, \cdots, c_{g}\right)=1$ and find that $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ depends only on $\left(c_{0}, \cdots, c_{g}\right)$ for every $0 \leq n \leq 2 g$. Moreover,
$m_{2 g-n}=\frac{1}{g \log q} R_{n-1}\left(c_{0}, \cdots, c_{g}\right) R_{n}\left(c_{0}, \cdots, c_{g}\right) \quad(1 \leq \forall n \leq 2 g)$.

Theorem 1

All zeros of $P_{g}(x)$ are on the unit circle and simple if and only if

Refinement of Theorem 1

We have $R_{1}\left(c_{0}, \cdots, c_{g}\right)=1$ and find that $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ depends only on $\left(c_{0}, \cdots, c_{g}\right)$ for every $0 \leq n \leq 2 g$. Moreover,

$$
m_{2 g-n}=\frac{1}{g \log q} R_{n-1}\left(c_{0}, \cdots, c_{g}\right) R_{n}\left(c_{0}, \cdots, c_{g}\right) \quad(1 \leq \forall n \leq 2 g)
$$

Theorem 1

All zeros of $P_{g}(x)$ are on the unit circle and simple if and only if

Refinement of Theorem 1

We have $R_{1}\left(c_{0}, \cdots, c_{g}\right)=1$ and find that $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ depends only on $\left(c_{0}, \cdots, c_{g}\right)$ for every $0 \leq n \leq 2 g$. Moreover,

$$
m_{2 g-n}=\frac{1}{g \log q} R_{n-1}\left(c_{0}, \cdots, c_{g}\right) R_{n}\left(c_{0}, \cdots, c_{g}\right) \quad(1 \leq \forall n \leq 2 g)
$$

Theorem 1'

All zeros of $P_{g}(x)$ are on the unit circle and simple if and only if

$$
0<R_{n}\left(c_{0}, \cdots, c_{g}\right)<\infty \quad \text { for every } 1 \leq n \leq 2 g . \quad(* *)
$$

Examples for small g

General algebraic formula of $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ is not yet obtained. But for small g, we can calculate them by an algorithmic way:

Examples for small g

General algebraic formula of $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ is not yet obtained. But for small g, we can calculate them by an algorithmic way:

- $g=1, R_{2}\left(c_{0}, c_{1}\right)=\frac{2 c_{0}+c_{1}}{2 c_{0}-c_{1}}$.
- $g=2, R_{n}=R_{n}\left(c_{0}, c_{1}, c_{2}\right)(2 \leq n \leq 4)$,

Examples for small g

General algebraic formula of $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ is not yet obtained. But for small g, we can calculate them by an algorithmic way:

- $g=1, R_{2}\left(c_{0}, c_{1}\right)=\frac{2 c_{0}+c_{1}}{2 c_{0}-c_{1}}$.
- $g=2, R_{n}=R_{n}\left(c_{0}, c_{1}, c_{2}\right)(2 \leq n \leq 4)$,

$$
\begin{aligned}
R_{2} & =\frac{4 c_{0}+c_{1}}{4 c_{0}-c_{1}}, \quad R_{3}=\frac{8 c_{0}^{2}-2 c_{1}^{2}+4 c_{0} c_{2}}{8 c_{0}^{2}+c_{1}^{2}-4 c_{0} c_{2}} \\
R_{4} & =\frac{2 c_{0}+2 c_{1}+c_{2}}{2 c_{0}-2 c_{1}+c_{2}}
\end{aligned}
$$

- $g=3, R_{n}=R_{n}\left(1, c_{1}, c_{2}, c_{3}\right)(2 \leq n \leq 6)$,

$$
\begin{aligned}
R_{2}= & \frac{6+c_{1}}{6-c_{1}}, \quad R_{3}=\frac{18-3 c_{1}^{2}+6 c_{2}}{18+2 c_{1}^{2}-6 c_{2}}, \\
R_{4}= & \frac{36+6 c_{1}-c_{1}^{2}+4 c_{1}^{3}-4 c_{2}^{2}+18 c_{3}-14 c_{1} c_{2}+c_{1}^{2} c_{2}+3 c_{1} c_{3}}{36-6 c_{1}-c_{1}^{2}-4 c_{1}^{3}-4 c_{2}^{2}-18 c_{3}+14 c_{1} c_{2}+c_{1}^{2} c_{2}+3 c_{1} c_{3}}, \\
R_{5}= & \left(108-21 c_{1}^{2}-12 c_{1}^{4}+108 c_{2}-12 c_{2}^{2}-12 c_{2}^{3}-27 c_{3}^{2}\right. \\
& \left.+42 c_{1}^{2} c_{2}+3 c_{1}^{2} c_{2}^{2}-54 c_{1} c_{3}-6 c_{1}^{3} c_{3}+30 c_{1} c_{2} c_{3}\right) \\
& /\left(108+9 c_{1}^{2}+8 c_{1}^{4}-108 c_{2}+36 c_{2}^{2}-4 c_{2}^{3}-27 c_{3}^{2}\right. \\
& \left.\quad-42 c_{1}^{2} c_{2}+c_{1}^{2} c_{2}^{2}+54 c_{1} c_{3}-4 c_{1}^{3} c_{3}+18 c_{1} c_{2} c_{3}\right), \\
R_{6}= & \frac{2+2 c_{1}+2 c_{2}+c_{3}}{2-2 c_{1}+2 c_{2}-c_{3}} .
\end{aligned}
$$

An interpretation of Theorem 1

The positivity of numbers $m_{2 g-n}$ or $R_{n}(1 \leq n \leq 2 g)$ can be interpreted from the viewpoint of the theory of canonical systems of linear differential equations.

In fact, the construction of $m_{2 g-n}$ is coming from the theory of canonical systems.

Now we review the theory of canonical systems of linear differential equations in order to explain the above things.

An interpretation of Theorem 1

The positivity of numbers $m_{2 g-n}$ or $R_{n}(1 \leq n \leq 2 g)$ can be interpreted from the viewpoint of the theory of canonical systems of linear differential equations.

In fact, the construction of $m_{2 g-n}$ is coming from the theory of canonical systems.

Now we review the theory of canonical systems of linear differential equations in order to explain the above things.

An interpretation of Theorem 1

The positivity of numbers $m_{2 g-n}$ or $R_{n}(1 \leq n \leq 2 g)$ can be interpreted from the viewpoint of the theory of canonical systems of linear differential equations.

In fact, the construction of $m_{2 g-n}$ is coming from the theory of canonical systems.

Now we review the theory of canonical systems of linear differential equations in order to explain the above things.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.

A family of linear differential equations on / of the form

parametrized by the complex parameter $z \in \mathbb{C}$ is called
a (two-dimensional) canonical system if

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a) \not \equiv 0$ on any open subset $J \subset I$ with $|J|>0$,
- $H(a)$ is locally integrable on I.

For a canonical system, $H(a)$ is called its Hamiltonian.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.

A family of linear differential equations on $/$ of the form
$-a \frac{d}{d a}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=z\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] H(a)\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right], \lim _{a \rightarrow a_{0}^{-}}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
parametrized by the complex parameter $z \in \mathbb{C}$ is called a (two-dimensional) canonical system

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a) \not \equiv 0$ on any open subset $J \subset I$ with $|J|>0$,
- $H(a)$ is locally integrable on I.

For a canonical system, $H(a)$ is called its Hamiltonian.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.

A family of linear differential equations on $/$ of the form
$-a \frac{d}{d a}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=z\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] H(a)\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right], \lim _{a \rightarrow a_{0}^{-}}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
parametrized by the complex parameter $z \in \mathbb{C}$ is called a (two-dimensional) canonical system if

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a)$ is locally integrable on I.

For a canonical system, $H(a)$ is called its Hamiltonian.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.

A family of linear differential equations on $/$ of the form
$-a \frac{d}{d a}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=z\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] H(a)\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right], \lim _{a \rightarrow a_{0}^{-}}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
parametrized by the complex parameter $z \in \mathbb{C}$ is called a (two-dimensional) canonical system if

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a) \not \equiv 0$ on any open subset $J \subset I$ with $|J|>0$,

For a canonical system, $H(a)$ is called its Hamiltonian.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.

A family of linear differential equations on $/$ of the form
$-a \frac{d}{d a}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=z\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] H(a)\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right], \lim _{a \rightarrow a_{0}^{-}}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
parametrized by the complex parameter $z \in \mathbb{C}$ is called a (two-dimensional) canonical system if

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a) \not \equiv 0$ on any open subset $J \subset I$ with $|J|>0$,
- $H(a)$ is locally integrable on I.

For a canonical system, $H(a)$ is called its Hamiltonian.

Definition of Canonical Systems

Let $H(a)$ be a 2×2 matrix-valued function defined almost everywhere on an interval $I=\left[1, a_{0}\right)\left(1<a_{0} \leq \infty\right)$.
A family of linear differential equations on $/$ of the form
$-a \frac{d}{d a}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=z\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] H(a)\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right], \lim _{a \rightarrow a_{0}^{-}}\left[\begin{array}{l}A(a, z) \\ B(a, z)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
parametrized by the complex parameter $z \in \mathbb{C}$ is called a (two-dimensional) canonical system if

- $H(a)={ }^{t} H(a)$ and $H(a) \geq 0$ for almost every $a \in I$,
- $H(a) \not \equiv 0$ on any open subset $J \subset I$ with $|J|>0$,
- $H(a)$ is locally integrable on I.

For a canonical system, $H(a)$ is called its Hamiltonian.

Relation with Theorem 1

By using the previous $m_{2 g-n}$ and $v_{g}(n)$ attached to $P_{g}(x)$, we can construct a 2×2 matrix-valued function $H_{q}(a)$ and a pair of functions $\left(A_{q}(a, z), B_{q}(a, z)\right)$ satisfying a system of linear differential equations on $\left[1, q^{g}\right)$ such that $H_{q}(a)$ is expected to be its Hamiltonian.

Construction of the Hamiltonian

Define the function $m_{q}(a)$ on $\left[1, q^{g}\right)$ by

$$
m_{q}(a)=m_{2 g-n} \quad \text { if } \quad q^{\frac{n-1}{2}} \leq a<q^{\frac{n}{2}}
$$

and define the 2×2 matrix-valued function $H_{q}(a)$ by

$$
H_{q}(a)=\left[\begin{array}{cc}
m_{q}(a)^{-1} & 0 \\
0 & m_{q}(a)
\end{array}\right]
$$

By Theorem 1, $H_{q}(a)$ satisfies conditions of a Hamiltonian
if and only if all zeros of $P_{g}(x)$ are on the unit circle and simple.

Construction of the Hamiltonian

Define the function $m_{q}(a)$ on $\left[1, q^{g}\right)$ by

$$
m_{q}(a)=m_{2 g-n} \quad \text { if } \quad q^{\frac{n-1}{2}} \leq a<q^{\frac{n}{2}}
$$

and define the 2×2 matrix-valued function $H_{q}(a)$ by

$$
H_{q}(a)=\left[\begin{array}{cc}
m_{q}(a)^{-1} & 0 \\
0 & m_{q}(a)
\end{array}\right]
$$

By Theorem 1, $H_{q}(a)$ satisfies conditions of a Hamiltonian if and only if all zeros of $P_{g}(x)$ are on the unit circle and simple.

Construction of the solution

In addition, define $A_{q}(a, z)$ and $B_{q}(a, z)$ for $(a, z) \in\left[1, q^{g}\right) \times \mathbb{C}$ by

$$
\begin{aligned}
& {\left[\begin{array}{c}
A_{q}(a, z) \\
B_{q}(a, z)
\end{array}\right]:=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right] \times} \\
& {\left[\begin{array}{cccccc}
c_{g}(a, z) & \cdots & c_{g-(2 g-n)}(a, z) & 0 & \cdots & 0 \\
0 & \cdots & 0 & s_{g}(a, z) & \cdots & s_{g-(2 g-n)}(a, z)
\end{array}\right] v_{g}(n)}
\end{aligned}
$$

if $q^{\frac{n-1}{2}} \leq a<q^{\frac{n}{2}}(1 \leq n \leq 2 g)$, where

$$
\begin{aligned}
& c_{k}(a, z):=2 \cos \left(z \log \left(q^{k} / a\right)\right), \\
& s_{k}(a, z):=2 i \sin \left(z \log \left(q^{k} / a\right)\right) .
\end{aligned}
$$

Construction of the boundary value

For a self-reciprocal polynomial $P_{g}(x)$ and $q>1$, we define

$$
A_{q}(z):=q^{-g i z} P_{g}\left(q^{i z}\right)=\sum_{k=0}^{g-1} c_{k}\left(q^{(g-k) i z}+q^{-(g-k) i z}\right)+c_{g}
$$

Clearly, all zeros of $P_{g}(x)$ are on the unit circle and simple if and only if all zeros of $A_{q}(z)$ are real and simple.
Further, we define

$$
B_{q}(z):=-\frac{d}{d z} A(z), \quad E_{q}(z):=A_{q}(z)-i B_{q}(z) .
$$

Construction of the boundary value

For a self-reciprocal polynomial $P_{g}(x)$ and $q>1$, we define

$$
A_{q}(z):=q^{-g i z} P_{g}\left(q^{i z}\right)=\sum_{k=0}^{g-1} c_{k}\left(q^{(g-k) i z}+q^{-(g-k) i z}\right)+c_{g}
$$

Clearly, all zeros of $P_{g}(x)$ are on the unit circle and simple if and only if all zeros of $A_{q}(z)$ are real and simple.

Further, we define

Construction of the boundary value

For a self-reciprocal polynomial $P_{g}(x)$ and $q>1$, we define

$$
A_{q}(z):=q^{-g i z} P_{g}\left(q^{i z}\right)=\sum_{k=0}^{g-1} c_{k}\left(q^{(g-k) i z}+q^{-(g-k) i z}\right)+c_{g}
$$

Clearly, all zeros of $P_{g}(x)$ are on the unit circle and simple if and only if all zeros of $A_{q}(z)$ are real and simple.
Further, we define

$$
B_{q}(z):=-\frac{d}{d z} A(z), \quad E_{q}(z):=A_{q}(z)-i B_{q}(z)
$$

Statement of Result II

Theorem 2

$A_{q}(a, z)$ and $B_{q}(a, z)$ are continuous functions on $\left[1, q^{g}\right)$ w.r.t. a, differentiable on $\left(q^{(n-1) / 2}, q^{n / 2}\right)$ for $1 \leq \forall n \leq 2 g$, and satisfy

$$
\begin{gathered}
-a \frac{d}{d a}\left[\begin{array}{l}
A_{q}(a, z) \\
B_{q}(a, z)
\end{array}\right]=z\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] H_{q}(a)\left[\begin{array}{l}
A_{q}(a, z) \\
B_{q}(a, z)
\end{array}\right], \\
{\left[\begin{array}{l}
A_{q}(1, z) \\
B_{q}(1, z)
\end{array}\right]=\left[\begin{array}{l}
A_{q}(z) \\
B_{q}(z)
\end{array}\right], \quad \lim _{a \rightarrow q^{g}}\left[\begin{array}{l}
A(a, z) \\
B(a, z)
\end{array}\right]=E_{q}(0)\left[\begin{array}{l}
1 \\
0
\end{array}\right]}
\end{gathered}
$$

for $z \in \mathbb{C}$. Moreover, this is a canonical system if and only if all zeros of $P_{g}(x)$ are on the unit circle and simple.

Results of L. de Branges

de Branges, I, 1959-1962

Every canonical system has a unique solution $(A(a, z), B(a, z))$ such that $E(a, z):=A(a, z)-i B(a, z)$ is entire w.r.t z, satisfies

$$
\text { (HB) } \quad|F(z)|>\left|F^{\sharp}(z)\right| \quad \text { for } \quad \Im(z)>0 \quad\left(F^{\sharp}(z)=\overline{F(\bar{z})}\right) \text {, }
$$

has no real zeros, and $E(a, 0)=1$ for every (regular) $a \in\left[1, a_{0}\right)$.

Condition (HB) implies that all zeros of $A(a, z)$ and $B(a, z)$ are real and interlace

Results of L. de Branges

de Branges, I, 1959-1962

Every canonical system has a unique solution $(A(a, z), B(a, z))$ such that $E(a, z):=A(a, z)-i B(a, z)$ is entire w.r.t z, satisfies

$$
\text { (HB) } \quad|F(z)|>\left|F^{\sharp}(z)\right| \quad \text { for } \quad \Im(z)>0 \quad\left(F^{\sharp}(z)=\overline{F(\bar{z})}\right) \text {, }
$$

has no real zeros, and $E(a, 0)=1$ for every (regular) $a \in\left[1, a_{0}\right)$.
Condition (HB) implies that all zeros of $A(a, z)$ and $B(a, z)$ are real and interlace.

Results of L. de Branges

de Branges, II, 1959-1962

Let $E(z)$ be an entire function satisfying (HB), having no real zeros, and $E(0)=1$. Then there exists a canonical system and its solution ($A(a, z), B(a, z))$ satisfying

$$
\left[\begin{array}{c}
A(1, z) \\
B(1, z)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left(E(z)+E^{\sharp}(z)\right) \\
\frac{i}{2}\left(E(z)-E^{\sharp}(z)\right)
\end{array}\right] .
$$

That is, canonical systems coincide with entire functions satisfying (HB) and having no real zeros.

Lemma 2

$E_{q}(z)=A_{q}(z)-i A_{q}^{\prime}(z)$ satisfies (HB) and has no real zeros if and only if all zeros of $A_{q}(z)$ are real and simple.

Therefore, if all zeros of $P_{g}(x)$ are on S^{1} and simple, then there exists a canonical system s.t. its solution $(A(a, z), B(a, z))$ satisfies

$$
\left[\begin{array}{l}
A(1, z) \\
B(1, z)
\end{array}\right]=\left[\begin{array}{l}
A_{q}(z) \\
B_{q}(z)
\end{array}\right]
$$

Theorem 2 assert that this canonical system and the solution are constructed concretely by using numbers $m_{2 g-n}$ and vectors $v_{g}(n)$

Lemma 2

$E_{q}(z)=A_{q}(z)-i A_{q}^{\prime}(z)$ satisfies (HB) and has no real zeros if and only if all zeros of $A_{q}(z)$ are real and simple.

Therefore, if all zeros of $P_{g}(x)$ are on S^{1} and simple, then there exists a canonical system s.t. its solution $(A(a, z), B(a, z))$ satisfies

$$
\left[\begin{array}{l}
A(1, z) \\
B(1, z)
\end{array}\right]=\left[\begin{array}{l}
A_{q}(z) \\
B_{q}(z)
\end{array}\right] .
$$

Theorem 2 assert that this canonical system and the solution are constructed concretely by using numbers $m_{2 g-n}$ and vectors $v_{g}(n)$.

Chebyshev transform and Algebraic formula

There exists real numbers $\lambda_{1}, \cdots, \lambda_{g}$ such that

$$
\begin{aligned}
P_{g}(x) & =\sum_{k=0}^{g-1} c_{k}\left(x^{2 g-k}+x^{k}\right)+c_{g} x^{g} \\
& =c_{0} x^{g} \prod_{j=1}^{g}\left(x+x^{-1}-2 \lambda_{j}\right) .
\end{aligned}
$$

$\left(P_{g}(x) \mapsto c_{0} \prod_{j=1}^{g}\left(y-2 \lambda_{j}\right)\right.$ is called the Chebyshev transform.)

In terms of $\lambda_{1}, \cdots, \lambda_{g}$, we have

- $g=1, R_{2}\left(c_{0}, c_{1}\right)=\frac{1-\lambda_{1}}{1+\lambda_{1}}$.
- $g=2, R_{n}=R_{n}\left(c_{0}, c_{1}, c_{2}\right)(2 \leq n \leq 4)$,

$$
\begin{aligned}
& R_{2}=\frac{\left(1-\lambda_{1}\right)+\left(1-\lambda_{2}\right)}{\left(1+\lambda_{1}\right)+\left(1+\lambda_{2}\right)}, \\
& R_{3}=\frac{\left(1-\lambda_{1}^{2}\right)+\left(1-\lambda_{2}^{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}}, \\
& R_{4}=\frac{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}{\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)} .
\end{aligned}
$$

- $g=3, R_{n}=R_{n}\left(c_{0}, c_{1}, c_{2}, c_{3}\right)(2 \leq n \leq 6)$,

$$
\begin{aligned}
& R_{2}=\frac{\left(1-\lambda_{1}\right)+\left(1-\lambda_{2}\right)+\left(1-\lambda_{3}\right)}{\left(1+\lambda_{1}\right)+\left(1+\lambda_{2}\right)+\left(1+\lambda_{3}\right)} \\
& R_{3}=\frac{\left(1-\lambda_{1}^{2}\right)+\left(1-\lambda_{2}^{2}\right)+\left(1-\lambda_{3}^{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{1}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}}, \\
& R_{4}=\frac{\sum_{1 \leq i<j \leq 3}\left(1-\lambda_{i}\right)\left(1-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2}}{\sum_{1 \leq i<j \leq 3}\left(1+\lambda_{i}\right)\left(1+\lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2}} \\
& R_{5}=\frac{\sum_{1 \leq i<j \leq 3}\left(1-\lambda_{i}^{2}\right)\left(1-\lambda_{j}^{2}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2}}{\prod_{1 \leq i<j \leq 3}\left(\lambda_{i}-\lambda_{j}\right)^{2}} \\
& R_{6}=\frac{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(1-\lambda_{3}\right)}{\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)} .
\end{aligned}
$$

As mentioned before, general (algebraic) formula of $R_{n}\left(c_{0}, \cdots, c_{g}\right)$ or $R_{n}\left(\lambda_{1}, \cdots, \lambda_{g}\right)$ had not yet been obtained.

We can deal with the case that all zeros of $P_{g}(x)$ are on the unit circle but $P_{g}(x)$ may have multiple zeros, if we define $m_{2 g-n}$ by taking the column vector $v_{g}(0)=\binom{\mathbf{a}_{g, \omega}}{\mathbf{a}_{g, \omega}}$ of length $(4 g+2)$ as the initial vector, where

$$
\mathbf{a}_{g, \omega}={ }^{t}\left(c_{0} q^{g \omega} c_{1} q^{(g-1) \omega} \cdots c_{g-1} q^{\omega} c_{g} c_{g-1} q^{-\omega} \cdots c_{0} q^{-g \omega}\right)
$$

for $\omega>0$. In this way, we obtain a family of systems parametrized by $\omega>0$ which corresponds to the family of functions

$$
\frac{1}{2}\left(A_{q}(z+i \omega)+A_{q}(z-i \omega)\right) \quad(\omega>0)
$$

as well as $A_{q}(z)$.

