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.. Self-Reciprocal Polynomials

A polynomial of degree n

P(x) = c0x
n + c1x

n−1 + · · ·+ cn−1x + cn (ci ∈ C, c0 ̸= 0).

is called a self-reciprocal if xnP(1/x) = P(x),
i.e., ck = cn−k for every 0 ≤ k ≤ n.
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.. Self-Reciprocal Polynomials

We treat only self-reciprocal polynomials of even degree, 2g ,
together with real coefficients.

If P(x) is self-reciprocal and of odd degree, then we have

P(x) = (x + 1)r P̃(x) (r ∈ Z>0)

for some self-reciprocal polynomial P̃(x) of even degree.

We often denote by Pg (x) a self-reciprocal polynomial of
degree 2g with real coefficients c0, c1, · · · , cg .
We study conditions of (real) coefficients c0, · · · , cg for Pg (x)
having all its zeros on the unit circle S1.
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.. Sources of self-reciprocal polynomials

1. The zeta function of a smooth projective curve C/Fq, genus g :

ZC (T ) =
QC (T )

(1− T )(1− qT )
.

PC (x) := QC (x/
√
q) is a self-reciprocal polynomial of degree 2g in

R[x ] by the functional equation of ZC (T ).

All zeros of PC (x) are on the unit circle by a result of A. Weil.
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2. The partition function of a ferromagnetic Ising model:
Let A = (ai ,j) be a n × n real symmetric matrix with |ai ,j | ≤ 1 for
1 ≤ i < j ≤ n. Then

PA(x) =
n∑

k=0

[ ∑
I⊂{1,2,··· ,n}

|I |=k

∏
i∈I

∏
j ̸∈I

ai ,j

]
xk

is a self-reciprocal polynomial.

All zeros of PA(x) are on the unit circle by Lee-Yang circle
theorem.
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3. Discretization of integral formulas of (self-dual) L-functions:

1

2
s(s − 1)π− s

2Γ
( s
2

)
ζ(s) =

∫ ∞

1
f (x)(x s−

1
2 + x−(s− 1

2
))
dx

x

= lim
T→∞

lim
q→1+

log q

⌊ log T
log q

⌋∑
k=0

f (qk)(qikz + q−ikz)

where f (x) = 1
2

√
x d
dx

[
x2 d

dx

∑
n∈Z exp(−πn2x2)

]
, s = 1

2 − iz .

The RHS gives a family of self-reciprocal polynomials

Pg ,T (x) = log q

g∑
k=0

f (qk)(xg+k + xg−k), q = T
1
g .

• Other examples are Alexander polynomials of knots, Duursma
zeta polynomials of self-dual codes, etc.
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.. Known General Results

.
A. Cohn, 1922
..

......

All zeros of a self-reciprocal polynomial P(x) ∈ R[x ] are on S1

if and only if all the zeros of P ′(x) lie inside or on S1.

Hence, for example, one can test whether all zeros of P(x) are on
S1 by calculating the Mahler measure of P ′(x).
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.. Known General Results

A simple condition in terms of coefficients is:
.
P. Lakatos, 2002
..

......

Let P(x) ∈ C[x ] be a self-reciprocal polynomial of degree n ≥ 2.
Suppose that

|c0| ≥
n−1∑
k=1

|ck − c0|.

Then all zeros of P(x) are on the unit circle S1.

This sufficient condition is generalized by A. Schinzel (2005),
Lakatos–L. Losonczi (2009), and D. Y. Kwon (2011).
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.. Known General Results

Another simple sufficient condition is:
.
W. Chen, 1995; K. Chinen, 2008
..

......

Suppose that P(x) ∈ R[x ] has the form

P(x) = (c0x
n+c1x

n−1+· · ·+ckx
n−k)+(ckx

k+ck−1x
k−1+· · ·+c0),

with c0 > c1 > · · · > ck > 0 (n ≥ k).
Then all zeros of P(x) are on the unit circle.

As above, known conditions in terms of coefficients are sufficient
conditions. Pattern of coefficients has the form “V” or |c0| ≈ |ck |.
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.. Result I

In this talk, we give a necessary and sufficient condition that
all zeros of P(x) are on S1 and simple in terms of coefficients
c0, · · · , cg by using the theory of canonical systems of linear
differential equations.

However, the result itself can be stated without the language
of canonical systems.
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.. Linear System adapted to Pg(x)

To state results, we introduce a linear system.
We define matrices Pk(mk) and Qk as follows:

P0(m0) := P0 :=

[
1

1

]
, Q0 :=

[
1 1

1 −1

]
,

P1(m1) :=


1 0
0 1

1− 0−
0 1 0 −m1

 , Q1 :=


1 0 1
0 1 0

1 0 −1

0 0 0 0 0 0

 ,
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P2(m2) :=



1 0 0
0 1 1

1− 0− 0
0− 1− −1

0 1 0
0 0 1

0 −m2 0
0 0 −m2

 ,

Q2 :=



1 0 0 1
0 1 1 0

1 0 0 −1
0 1 −1 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

 .
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For k ≥ 2, define square matrices Pk(mk) of size (2k + 2) by

Pk(mk) :=

V+
k 000
000 V−

k
000Ik −mk · 000Ik

 ,

where

000Ik :=

 0 1
...

. . .

0 1

 , mk · 000Ik :=

 0 mk
...

. . .

0 mk


and . . .
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V+
k =



1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 1
0 0 1 0 · · · 0 1 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0


(
k+3
2

)
× (k + 1),

V−
k =


1 0 0 · · · · · · · · · 0 0 0
0 1 0 · · · · · · · · · 0 0 −1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 1 0 0 0 −1 0 0
0 0 0 1 0 −1 0 0 0

(
k+1
2

)
× (k + 1),

if k is odd.
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V+
k =



1 0 0 0 · · · · · · 0 0 0
0 1 0 0 · · · · · · 0 0 1
0 0 1 0 · · · · · · 0 1 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0


(
k+2
2

)
× (k + 1),

V−
k =


1 0 0 0 · · · · · · 0 0 0
0 1 0 0 · · · · · · 0 0 −1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 −1 0 0 0

(
k+2
2

)
× (k + 1),

if k is even.
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.
Lemma 1
..

......

Let k ≥ 1. We have

detPk(mk) =

±2j−1 ·mj
2j−1 if k = 2j − 1,

±2j ·mj
2j if k = 2j .

In particular, the matrix Pk(mk) is invertible iff mk ̸= 0.
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For k ≥ 2, we define matrices Qk of size (2k + 2)× (2k + 4) by

Qk :=

 W+
k 000
000 W−

k
000k,k+2 000k,k+2

 ,

W+
k :=

 V+
k

1
0
...
0



(
k + 3

2

)
× (k + 2) if k is odd,(

k + 2

2

)
× (k + 2) if k is even,

W−
k :=

 V−
k

1
0
...
0



(
k + 1

2

)
× (k + 2) if k is odd,(

k + 2

2

)
× (k + 2) if k is even.
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For a self-reciprocal polynomial
Pg (x) = c0x

2g + c1x
2g−1 + · · ·+ cgx

g + · · ·
and arbitrary fixed q > 1,
we define the column vector vg (0) of length (4g + 2) by

vg (0) :=

(
ag
bg

)
, ag :=



c0
c1
...

cg−1

cg
cg−1
...
c1
c0


, bg :=



c0 log(q
g )

c1 log(q
g−1)

...
cg−1 log q

0
−cg−1 log q

...
−c1 log(q

g−1)
−c0 log(q

g )


.
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We define column vectors vg (n) of length (4g + 2− 2n)
inductively for 1 ≤ n ≤ 2g by taking vg (0) as the initial vector :

m2g−n :=
vg (n − 1)[1] + vg (n − 1)[2g − n + 2]

vg (n − 1)[2g − n + 3]− vg (n − 1)[4g − 2n + 4]
,

vg (n) := P2g−n(m2g−n)
−1 · Q2g−n · vg (n − 1),

where v [j ] means j-th component of a column vector v .

m2g−n and components of vg (n) are rational functions of
coefficients (c0, · · · , cg ) and log q for every 1 ≤ n ≤ 2g .

m2g−n is not identically zero for every 1 ≤ n ≤ 2g .

19 / 38
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.. Statement of Result I

.
Theorem 1
..

......

Let Pg (x) be a self-reciprocal polynomial of degree 2g (g ≥ 1)
with real coefficients c0, · · · , cg . Fix q > 1 arbitrary and define
numbers m2g−n = m2g−n(c0, · · · , cg ; log q) as above.

Then all zeros of Pg (x) are on the unit circle and simple
if and only if

0 < m2g−n < ∞ for every 1 ≤ n ≤ 2g . (∗)

The condition (∗) is independent of the choice of q > 1.
It is obvious from the following refinement of the above theorem.
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.. Refinement of Theorem 1

Put m2g :=
1

g log q
. Define Rn = Rn(c0, · · · , cg ) by

R0 := 1

and

Rn :=



m2g−1m2g−3 · · ·m2g−2j−1

m2gm2g−2 · · ·m2g−2j
if n = 2j + 1,

m2g−2m2g−4 · · ·m2g−2j−2

m2g−1m2g−3 · · ·m2g−2j−1
if n = 2j + 2,

for 1 ≤ n ≤ 2g , where m2g−n = m2g−n(c0, · · · , cg ; log q).
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.. Refinement of Theorem 1

We have R1(c0, · · · , cg ) = 1 and find that Rn(c0, · · · , cg ) depends
only on (c0, · · · , cg ) for every 0 ≤ n ≤ 2g . Moreover,

m2g−n =
1

g log q
Rn−1(c0, · · · , cg )Rn(c0, · · · , cg ) (1 ≤ ∀n ≤ 2g).

.
Theorem 1’
..

......

All zeros of Pg (x) are on the unit circle and simple if and only if

0 < Rn(c0, · · · , cg ) < ∞ for every 1 ≤ n ≤ 2g . (∗∗)
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.
Theorem 1’
..

......

All zeros of Pg (x) are on the unit circle and simple if and only if

0 < Rn(c0, · · · , cg ) < ∞ for every 1 ≤ n ≤ 2g . (∗∗)
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.. Examples for small g

General algebraic formula of Rn(c0, · · · , cg ) is not yet obtained.
But for small g , we can calculate them by an algorithmic way:

g = 1, R2(c0, c1) =
2c0 + c1
2c0 − c1

.

g = 2, Rn = Rn(c0, c1, c2) (2 ≤ n ≤ 4),

R2 =
4c0 + c1
4c0 − c1

, R3 =
8c20 − 2c21 + 4c0c2
8c20 + c21 − 4c0c2

,

R4 =
2c0 + 2c1 + c2
2c0 − 2c1 + c2

.
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• g = 3, Rn = Rn(1, c1, c2, c3) (2 ≤ n ≤ 6),

R2 =
6 + c1
6− c1

, R3 =
18− 3c21 + 6c2
18 + 2c21 − 6c2

,

R4 =
36 + 6c1 − c21 + 4c31 − 4c22 + 18c3 − 14c1c2 + c21c2 + 3c1c3
36− 6c1 − c21 − 4c31 − 4c22 − 18c3 + 14c1c2 + c21c2 + 3c1c3

,

R5 = (108− 21c21 − 12c41 + 108c2 − 12c22 − 12c32 − 27c23

+ 42c21c2 + 3c21c
2
2 − 54c1c3 − 6c31c3 + 30c1c2c3)

/(108 + 9c21 + 8c41 − 108c2 + 36c22 − 4c32 − 27c23

− 42c21c2 + c21c
2
2 + 54c1c3 − 4c31c3 + 18c1c2c3),

R6 =
2 + 2c1 + 2c2 + c3
2− 2c1 + 2c2 − c3

.
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.. An interpretation of Theorem 1

The positivity of numbers m2g−n or Rn (1 ≤ n ≤ 2g) can be
interpreted from the viewpoint of the theory of canonical systems
of linear differential equations.

In fact, the construction of m2g−n is coming from the theory of
canonical systems.

Now we review the theory of canonical systems of linear differential
equations in order to explain the above things.
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.. Definition of Canonical Systems

Let H(a) be a 2× 2 matrix-valued function defined almost
everywhere on an interval I = [1, a0) (1 < a0 ≤ ∞).

A family of linear differential equations on I of the form

−a
d

da

[
A(a, z)
B(a, z)

]
= z

[
0 −1
1 0

]
H(a)

[
A(a, z)
B(a, z)

]
, lim
a→a−0

[
A(a, z)
B(a, z)

]
=

[
1
0

]
parametrized by the complex parameter z ∈ C is called
a (two-dimensional) canonical system if

H(a) = tH(a) and H(a) ≥ 0 for almost every a ∈ I ,

H(a) ̸≡ 0 on any open subset J ⊂ I with |J| > 0,

H(a) is locally integrable on I .

For a canonical system, H(a) is called its Hamiltonian.
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.. Relation with Theorem 1

By using the previous m2g−n and vg (n) attached to Pg (x),
we can construct a 2× 2 matrix-valued function Hq(a) and
a pair of functions (Aq(a, z),Bq(a, z)) satisfying
a system of linear differential equations on [1, qg ) such that
Hq(a) is expected to be its Hamiltonian.
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.. Construction of the Hamiltonian

Define the function mq(a) on [1, qg ) by

mq(a) = m2g−n if q
n−1
2 ≤ a < q

n
2

and define the 2× 2 matrix-valued function Hq(a) by

Hq(a) =

[
mq(a)

−1 0
0 mq(a)

]
.

By Theorem 1, Hq(a) satisfies conditions of a Hamiltonian
if and only if all zeros of Pg (x) are on the unit circle and simple.
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.. Construction of the solution

In addition, define Aq(a, z) and Bq(a, z) for (a, z) ∈ [1, qg )× C by[
Aq(a, z)
Bq(a, z)

]
:=

1

2

[
1 0
0 −i

]
×[

cg (a, z) · · · cg−(2g−n)(a, z) 0 · · · 0
0 · · · 0 sg (a, z) · · · sg−(2g−n)(a, z)

]
vg (n)

if q
n−1
2 ≤ a < q

n
2 (1 ≤ n ≤ 2g), where

ck(a, z) : = 2 cos(z log(qk/a)),

sk(a, z) : = 2i sin(z log(qk/a)).
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.. Construction of the boundary value

For a self-reciprocal polynomial Pg (x) and q > 1, we define

Aq(z) := q−gizPg (q
iz) =

g−1∑
k=0

ck

(
q(g−k)iz + q−(g−k)iz

)
+ cg .

Clearly, all zeros of Pg (x) are on the unit circle and simple
if and only if all zeros of Aq(z) are real and simple.

Further, we define

Bq(z) := − d

dz
A(z), Eq(z) := Aq(z)− iBq(z).
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.. Statement of Result II

.
Theorem 2
..

......

Aq(a, z) and Bq(a, z) are continuous functions on [1, qg ) w.r.t. a,
differentiable on (q(n−1)/2, qn/2) for 1 ≤ ∀n ≤ 2g , and satisfy

−a
d

da

[
Aq(a, z)
Bq(a, z)

]
= z

[
0 −1
1 0

]
Hq(a)

[
Aq(a, z)
Bq(a, z)

]
,[

Aq(1, z)
Bq(1, z)

]
=

[
Aq(z)
Bq(z)

]
, lim

a→qg

[
A(a, z)
B(a, z)

]
= Eq(0)

[
1
0

]
for z ∈ C. Moreover, this is a canonical system if and only if all
zeros of Pg (x) are on the unit circle and simple.
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.. Results of L. de Branges

.
de Branges, I, 1959–1962
..

......

Every canonical system has a unique solution (A(a, z),B(a, z))
such that E (a, z) := A(a, z)− iB(a, z) is entire w.r.t z , satisfies

(HB) |F (z)| > |F ♯(z)| for ℑ(z) > 0 (F ♯(z) = F (z̄)),

has no real zeros, and E (a, 0) = 1 for every (regular) a ∈ [1, a0).

Condition (HB) implies that all zeros of A(a, z) and B(a, z) are
real and interlace.
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.. Results of L. de Branges

.
de Branges, II, 1959–1962
..

......

Let E (z) be an entire function satisfying (HB), having no real
zeros, and E (0) = 1. Then there exists a canonical system and its
solution (A(a, z),B(a, z)) satisfying

[
A(1, z)
B(1, z)

]
=

1
2(E (z) + E ♯(z))

i
2(E (z)− E ♯(z))

 .

That is, canonical systems coincide with entire functions satisfying
(HB) and having no real zeros.
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.
Lemma 2
..

......

Eq(z) = Aq(z)− iA′
q(z) satisfies (HB) and has no real zeros

if and only if all zeros of Aq(z) are real and simple.

Therefore, if all zeros of Pg (x) are on S1 and simple, then there
exists a canonical system s.t. its solution (A(a, z),B(a, z)) satisfies[

A(1, z)
B(1, z)

]
=

[
Aq(z)
Bq(z)

]
.

Theorem 2 assert that this canonical system and the solution are
constructed concretely by using numbers m2g−n and vectors vg (n).
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.. Chebyshev transform and Algebraic formula

There exists real numbers λ1, · · · , λg such that

Pg (x) =

g−1∑
k=0

ck(x
2g−k + xk) + cgx

g

= c0 x
g

g∏
j=1

(x + x−1 − 2λj).

(Pg (x) 7→ c0
∏g

j=1(y − 2λj) is called the Chebyshev transform.)
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In terms of λ1, · · · , λg , we have

• g = 1, R2(c0, c1) =
1− λ1

1 + λ1
.

• g = 2, Rn = Rn(c0, c1, c2) (2 ≤ n ≤ 4),

R2 =
(1− λ1) + (1− λ2)

(1 + λ1) + (1 + λ2)
,

R3 =
(1− λ2

1) + (1− λ2
2)

(λ1 − λ2)2
,

R4 =
(1− λ1)(1− λ2)

(1 + λ1)(1 + λ2)
.
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• g = 3, Rn = Rn(c0, c1, c2, c3) (2 ≤ n ≤ 6),

R2 =
(1− λ1) + (1− λ2) + (1− λ3)

(1 + λ1) + (1 + λ2) + (1 + λ3)
,

R3 =
(1− λ2

1) + (1− λ2
2) + (1− λ2

3)

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2
,

R4 =

∑
1≤i<j≤3(1− λi )(1− λj)(λi − λj)

2∑
1≤i<j≤3(1 + λi )(1 + λj)(λi − λj)2

,

R5 =

∑
1≤i<j≤3(1− λ2

i )(1− λ2
j )(λi − λj)

2∏
1≤i<j≤3(λi − λj)2

,

R6 =
(1− λ1)(1− λ2)(1− λ3)

(1 + λ1)(1 + λ2)(1 + λ3)
.

As mentioned before, general (algebraic) formula of Rn(c0, · · · , cg )
or Rn(λ1, · · · , λg ) had not yet been obtained.
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We can deal with the case that all zeros of Pg (x) are on the unit
circle but Pg (x) may have multiple zeros, if we define m2g−n by

taking the column vector vg (0) =

(
ag ,ω
ag ,ω

)
of length (4g + 2) as

the initial vector, where

ag ,ω = t(c0q
gω c1q

(g−1)ω · · · cg−1q
ω cg cg−1q

−ω · · · c0q
−gω)

for ω > 0. In this way, we obtain a family of systems parametrized
by ω > 0 which corresponds to the family of functions

1

2

(
Aq(z + iω) + Aq(z − iω)

)
(ω > 0)

as well as Aq(z).
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